Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
JMIR Public Health Surveill ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2198084

ABSTRACT

BACKGROUND: Rapid diagnostic tests (RDTs) are being widely used to manage COVID-19 pandemic. However, many results remain unreported or unconfirmed altering a correct epidemiological surveillance. OBJECTIVE: To evaluate an artificial intelligence-based smartphone application, connected to a cloud web platform, to automatically and objectively read rapid diagnostic test (RDT) results and assess its impact on COVID-19 pandemic management. METHODS: Overall, 252 human sera were used to inoculate a total of 1,165 RDTs for training and validation purposes. We then conducted two field studies to assess the performance on real-world scenarios by testing 172 antibody RDTs at two nursing homes and 96 antigen RDTs at one hospital emergency department. RESULTS: Field studies demonstrated high levels of sensitivity (100%) and specificity (94.4%, CI 92.8-96.1%) for reading IgG band of COVID-19 antibodies RDTs compared to visual readings from health workers. Sensitivity of detecting IgM test bands was 100% and specificity was 95.8%, CI 94.3-97.3%. All COVID-19 antigen RDTs were correctly read by the app. CONCLUSIONS: The proposed reading system is automatic, reducing variability and uncertainty associated with RDTs interpretation and can be used to read different RDTs brands. The web platform serves as a real time epidemiological tracking tool and facilitates reporting of positive RDTs to relevant health authorities.

2.
Sci Rep ; 12(1): 9387, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1878544

ABSTRACT

The main objective of this work is to develop and evaluate an artificial intelligence system based on deep learning capable of automatically identifying, quantifying, and characterizing COVID-19 pneumonia patterns in order to assess disease severity and predict clinical outcomes, and to compare the prediction performance with respect to human reader severity assessment and whole lung radiomics. We propose a deep learning based scheme to automatically segment the different lesion subtypes in nonenhanced CT scans. The automatic lesion quantification was used to predict clinical outcomes. The proposed technique has been independently tested in a multicentric cohort of 103 patients, retrospectively collected between March and July of 2020. Segmentation of lesion subtypes was evaluated using both overlapping (Dice) and distance-based (Hausdorff and average surface) metrics, while the proposed system to predict clinically relevant outcomes was assessed using the area under the curve (AUC). Additionally, other metrics including sensitivity, specificity, positive predictive value and negative predictive value were estimated. 95% confidence intervals were properly calculated. The agreement between the automatic estimate of parenchymal damage (%) and the radiologists' severity scoring was strong, with a Spearman correlation coefficient (R) of 0.83. The automatic quantification of lesion subtypes was able to predict patient mortality, admission to the Intensive Care Units (ICU) and need for mechanical ventilation with an AUC of 0.87, 0.73 and 0.68 respectively. The proposed artificial intelligence system enabled a better prediction of those clinically relevant outcomes when compared to the radiologists' interpretation and to whole lung radiomics. In conclusion, deep learning lesion subtyping in COVID-19 pneumonia from noncontrast chest CT enables quantitative assessment of disease severity and better prediction of clinical outcomes with respect to whole lung radiomics or radiologists' severity score.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
3.
BMJ Glob Health ; 7(3)2022 03.
Article in English | MEDLINE | ID: covidwho-1736059

ABSTRACT

The spread of infectious diseases such as COVID-19 presents many challenges to healthcare systems and infrastructures across the world, exacerbating inequalities and leaving the world's most vulnerable populations at risk. Epidemiological modelling is vital to guiding evidence-informed or data-driven decision making. In forced displacement contexts, and in particular refugee and internally displaced people (IDP) settlements, it meets several challenges including data availability and quality, the applicability of existing models to those contexts, the accurate modelling of cultural differences or specificities of those operational settings, the communication of results and uncertainties, as well as the alignment of strategic goals between diverse partners in complex situations. In this paper, we systematically review the limited epidemiological modelling work applied to refugee and IDP settlements so far, and discuss challenges and identify lessons learnt from the process. With the likelihood of disease outbreaks expected to increase in the future as more people are displaced due to conflict and climate change, we call for the development of more approaches and models specifically designed to include the unique features and populations of refugee and IDP settlements. To strengthen collaboration between the modelling and the humanitarian public health communities, we propose a roadmap to encourage the development of systems and frameworks to share needs, build tools and coordinate responses in an efficient and scalable manner, both for this pandemic and for future outbreaks.


Subject(s)
COVID-19 , Communicable Diseases , Refugees , Communicable Diseases/epidemiology , Humans , Pandemics , SARS-CoV-2
4.
Nature Machine Intelligence ; 3(1):2-8, 2021.
Article in English | ProQuest Central | ID: covidwho-1655656

ABSTRACT

We invited authors of selected Comments and Perspectives published in Nature Machine Intelligence in the latter half of 2019 and first half of 2020 to describe how their topic has developed, what their thoughts are about the challenges of 2020, and what they look forward to in 2021.

5.
PLoS Comput Biol ; 17(10): e1009360, 2021 10.
Article in English | MEDLINE | ID: covidwho-1496326

ABSTRACT

The spread of infectious diseases such as COVID-19 presents many challenges to healthcare systems and infrastructures across the world, exacerbating inequalities and leaving the world's most vulnerable populations most affected. Given their density and available infrastructure, refugee and internally displaced person (IDP) settlements can be particularly susceptible to disease spread. In this paper we present an agent-based modeling approach to simulating the spread of disease in refugee and IDP settlements under various non-pharmaceutical intervention strategies. The model, based on the June open-source framework, is informed by data on geography, demographics, comorbidities, physical infrastructure and other parameters obtained from real-world observations and previous literature. The development and testing of this approach focuses on the Cox's Bazar refugee settlement in Bangladesh, although our model is designed to be generalizable to other informal settings. Our findings suggest the encouraging self-isolation at home of mild to severe symptomatic patients, as opposed to the isolation of all positive cases in purpose-built isolation and treatment centers, does not increase the risk of secondary infection meaning the centers can be used to provide hospital support to the most intense cases of COVID-19. Secondly we find that mask wearing in all indoor communal areas can be effective at dampening viral spread, even with low mask efficacy and compliance rates. Finally, we model the effects of reopening learning centers in the settlement under various mitigation strategies. For example, a combination of mask wearing in the classroom, halving attendance regularity to enable physical distancing, and better ventilation can almost completely mitigate the increased risk of infection which keeping the learning centers open may cause. These modeling efforts are being incorporated into decision making processes to inform future planning, and further exercises should be carried out in similar geographies to help protect those most vulnerable.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Epidemics , Refugees , SARS-CoV-2 , Bangladesh/epidemiology , COVID-19/prevention & control , Comorbidity , Computational Biology , Computer Simulation , Data Visualization , Disease Progression , Humans , Masks , Physical Distancing , Refugees/statistics & numerical data , Schools , Systems Analysis
6.
The Journal of Artificial Intelligence Research ; 69:807-845, 2020.
Article in English | ProQuest Central | ID: covidwho-1318340

ABSTRACT

COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization, which has reported over 18 million confirmed cases as of August 5, 2020. In this review, we present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence, to tackle many aspects of the COVID19 crisis. We have identified applications that address challenges posed by COVID-19 at different scales, including: molecular, by identifying new or existing drugs for treatment;clinical, by supporting diagnosis and evaluating prognosis based on medical imaging and non-invasive measures;and societal, by tracking both the epidemic and the accompanying infodemic using multiple data sources. We also review datasets, tools, and resources needed to facilitate Artificial Intelligence research, and discuss strategic considerations related to the operational implementation of multidisciplinary partnerships and open science. We highlight the need for international cooperation to maximize the potential of AI in this and future pandemics.

7.
IEEE Technology & Society Magazine ; 40(1):71-79, 2021.
Article in English | ProQuest Central | ID: covidwho-1145241

ABSTRACT

As secretary general of the United Nations, Antonio Guterres said during the 2020 Nelson Mandela Annual Lecture, “COVID-19 has been likened to an X-ray, revealing fractures in the fragile skeleton of the societies we have built.” Without a doubt, the COVID-19 pandemic has exposed and exacerbated existing global inequalities. Whether at the local, national, or international scale, the gap between the privileged and the vulnerable is growing wider, resulting in a broad increase in inequality across all dimensions of society. The disease has strained health systems, social support programs, and the economy as a whole, drawing an ever-widening distinction between those with access to treatment, services, and job opportunities and those without. Global lockdown restrictions have led to increases in childcare and housework responsibilities, and most of the burden has fallen on women, further increasing existing gender inequality [1] , [2] . Indigenous populations worldwide find themselves more vulnerable to infection, many times with less access to health services or hygiene measures and limited updated scientific information about the virus and measures that can be taken to mitigate it [3] . Inequality has also pervaded the education sector, with only a subset of students able to attend safe in-person schooling or access online education when needed.

9.
Nature Machine Intelligence ; 2(6):295-297, 2020.
Article | Web of Science | ID: covidwho-786672

ABSTRACT

In an unprecedented effort of scientific collaboration, researchers across fields are racing to support the response to COVID-19. Making a global impact with AI tools will require scalable approaches for data, model and code sharing;adapting applications to local contexts;and cooperation across borders.

SELECTION OF CITATIONS
SEARCH DETAIL